#the makerspace_ librarian’s sourcebook

// edited by ellyssa kroski

An imprint of the American Library Association
Chicago I 2017

www.alastore.ala.org
Ellyssa Kroski is Director of Information Technology at the New York Law Institute, as well as an award-winning editor and author of thirty-five books including *Law Librarianship in the Digital Age*, for which she won the AALL’s 2014 Joseph L. Andrews Legal Literature Award. Her ten-book technology series The Tech Set won ALA’s Best Book in Library Literature Award in 2011. She is a librarian, an adjunct faculty member at Drexel and San Jose State Universities, and an international conference speaker. Her professional portfolio is located at www.ellyssakroski.com.
Part One // Creating the Library Makerspace

Ch 1 How to Start a Library Makerspace .. 3
CHERIE BRONKAR

Ch 2 Pedagogy and Prototyping in Library Makerspaces 29
LAURA COSTELLO, MEREDITH POWERS, AND DANA HAUGH

Ch 3 Encouraging a Diverse Maker Culture 51
AMY VECCHIONE, DEANA BROWN, GREGORY BRASIER, AND ANN DELANEY

Ch 4 Safety and Guidelines in the Library Makerspace 73
KEVIN DELECKI

Part Two // Makerspace Materials, Tools, and Technologies

Ch 5 A Librarian’s Guide to 3D Printing ... 87
BOHYUN KIM

Ch 6 Raspberry Pi for Librarians ... 113
STEPHEN M. TAFOYA

Ch 7 Arduino for Librarians ... 135
JONATHAN M. SMITH

Ch 8 LilyPad, Adafruit, and More: Wearable Electronics for Libraries ... 157
MEGAN EGBERT

www.alastore.ala.org
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 9</td>
<td>Google Cardboard for Librarians</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Tom Bruno</td>
<td></td>
</tr>
<tr>
<td>Ch 10</td>
<td>Legos in the Library</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Megan Lotts</td>
<td></td>
</tr>
<tr>
<td>Ch 11</td>
<td>LittleBits, Makey Makey, Chibitronics, and More:</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Circuitry Projects for Libraries</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wendy Harrop</td>
<td></td>
</tr>
<tr>
<td>Ch 12</td>
<td>Computer Numerical Control in the Library with Cutting and Milling Machines</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Rob Dumas</td>
<td></td>
</tr>
<tr>
<td>Ch 13</td>
<td>Robotics in Libraries</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Antonia Krupicka-Smith</td>
<td></td>
</tr>
<tr>
<td>Ch 14</td>
<td>Drones in the Library</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Chad Mairn and Kristi Seferi</td>
<td></td>
</tr>
<tr>
<td>Ch 15</td>
<td>Library Hackerspace Programs</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Chad Clark</td>
<td></td>
</tr>
</tbody>
</table>

Part Three // Looking Ahead

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 16</td>
<td>Mobile Makerspaces</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>Kim Martin, Mary Compton, and Ryan Hunt</td>
<td></td>
</tr>
<tr>
<td>Ch 17</td>
<td>Sustainability: Keeping the Library Makerspace Alive</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Sharona Ginsberg</td>
<td></td>
</tr>
<tr>
<td>Ch 18</td>
<td>The Future of Library Makerspaces</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Eric Johnson</td>
<td></td>
</tr>
</tbody>
</table>

Index 369
figures and tables

Figures

5.1 Elements of Polygonal Mesh Modeling 90
5.2 3D Model of the Left Shark Loaded in the MakerBot Desktop Application with the Rotate Control Option Selected (Note That Part of the Model Is below the Build Platform) 97
5.3 Settings Section of the MakerBot Desktop Application Connected to Replicator 2X with the Quick Tab Displayed 98
5.4 3D Model of the Stanford Bunny with Non-Manifold Geometry Issues, Opened in NetFabb Basic 101
5.5 3D Printed Gears Using MakerBot Replicator 2X, Displayed with Information about Material Type, Printing Time, and Cost 105
5.6 3D Model of a Keyring Displayed in Tinkercad 108
6.1 Raspberry Pi Model B, with Its Many Ports and Connections 114
6.2 If You Have a 3D Printer, You Can Create Some Cool Pi Cases 119
6.3 You Can Have Your Pi and Make Music with It, Too 121
6.4 By Diagramming the Pi, Users Learn the Parts of a Computer and How It Works 123
6.5 You Can Code Games, Apps, and Even Music on Raspberry Pi 126
6.6 Raspberry Pi Goes Hand-in-Hand with Minecraft 129
7.1 Breadboard View of a Circuit Diagram Illustrates the Connections for This Three-LED Project (See Step Two for Details) 147
7.2 Note the Connection between ANALOG Pin A0 of the Arduino and the OUT (or Analog Voltage Out) Leg of the TMP36 Sensor 149
7.3 Wiring May Look a Bit Different Depending on the Arrangement of the Pins on the PIR Sensor 151

www.alastore.ala.org
10.1 Mason Gross Printmaking Class 206
10.2 Image from #LeGOMAKE Tour Workshop 208
11.1 Makey Makey Kit by JoyLabz 214
11.2 littleBits Magnetic Circuit Components 216
11.3 Snap Circuits by Elenco 217
11.4 Students Snap Pieces Together to Complete Circuits 218
11.5 Chibitronics LED Sticker Circuits 219
11.6 Basic Conductive Materials to Help Students Explore Circuitry in the Library Makerspace 220
14.1 Soldering Motor Wires to Drone Frame 269
14.2 Turnigy Radio Transmitter 273
14.3 Complete Drone Parts 275
14.4 Completed Drone 275
14.5 Indoor Heli Sim 3D Simulator 276
16.1 Young Makers Using littleBits to Create Circuits 315
16.2 The MakerBus Readies for an Event 319

Tables

Table 8.1 LilyPad Specs 159
Table 8.2 Flora Specs 160
Table 8.3 Gemma Specs 161
he Makerspace Librarian’s Sourcebook is an essential all-in-one guidebook to the maker realm written specifically for librarians. This practical volume is an invaluable resource for librarians seeking to learn about the major topics, tools, and technologies relevant to makerspaces today. Jam-packed with instruction and advice from the field’s most tech-savvy innovators, this one-stop handbook will inspire readers through practical projects that they can implement in their libraries right now.

Part I leads librarians through how to start their own makerspaces from the ground up, reviewing strategic planning, funding sources, starter equipment lists, space design, and safety guidelines. It also discusses the transformative teaching and learning opportunities that makerspaces offer, as well as how to empower and encourage a diverse maker culture within the library.

Part II provides hands-on, practical discussions of the eleven essential technologies and tools that are most commonly found in makerspaces of all types. This section serves as a primer on all the major maker tools and technologies ranging from 3D printers, Raspberry Pi, Arduino, wearable electronics, to CNC, Legos, drones, and circuitry kits. It covers what they are, how to use them, how different libraries are using them, and offers project suggestions that are specifically geared toward libraries.

Part III looks ahead to topics such as making your makerspace mobile, sustaining your makerspace once initial grants and funding sources are gone, and the future of makerspaces in libraries.

Authored by knowledgeable maker librarians, this comprehensive resource will guide librarians through all they need to know to make the most of their library makerspace.

—ELLYSSA KROSKI
The New York Law Institute
How to Start a Library Makerspace

CHERIE BRONKAR

What Is a Makerspace?

You may have heard the term “makerspace” and wondered what it meant. Makerspaces are, simply put, places where people gather to make things. Although that may sound like a simplistic definition, the things that can be created in a makerspace vary a great deal. Makerspaces can be high tech, low tech, and everything in between. A makerspace’s offerings revolve around the needs of the community it serves, but the one thing all have in common is that they bring people together to share ideas.

Typically, the first thing that comes to mind when thinking about makerspaces is 3D printing, but when it comes to what’s going on in makerspaces around the world, that’s just the tip of the iceberg. Makers create things, ideas, and concepts. Makers work in metal, wood, plastic, fabric, paper, and digital forms. From robotics to crocheting, there are no limits to your makerspace. Let your imagination run wild.

Cherie Bronkar is Director-Regional Library at Kent State University Tuscarawas.

www.alastore.ala.org
In this chapter, we’ll provide the information and ideas to get your makerspaces up and running based on your unique populations and budgets. You’ll find a myriad of ways to create your makerspace. You’ll also discover ways to ensure your makerspace is fun and functional.

Know Your Makerspace Culture

Makerspace culture developed from hackathons, which were rooted in software and brought together groups with an interest in creating new apps and software. Such ventures nourished the makerspace culture.

The makerspace culture brings together multiple groups with multiple interests, sometimes putting together unlikely pairings to encourage new ways to think and create. What the members of these groups have in common is a love of tinkering, building, and sharing ideas. The makerspace provides space, resources, training, and technology that all enhance the culture.

Because it isn’t limited by age or experience, makerspace culture is unique. Often, groups are comprised of those who just have an interest in creating new products and information. The focus is on sharing and learning in a synergetic environment. The key is that whether these groups are solving a problem or simply creating a fun piece of 3D art, they are doing it in a collaborative environment where makers can bounce their ideas off others with similar interests.

How does the maker culture fit a library? Makers create information as well as physical objects. In the past, the librarian’s traditional role was to house information. Libraries now take an active part in the production process as well as in developing new information, all the while passing along valuable STEM skills to library patrons through instruction and by providing the tools of production such as 3D printers, 3D modeling software, and more. The maker culture has found a new home in our libraries. We need makers and they need us.

Discover the Major Types of Makerspaces

Makerspaces come in many forms, from low tech to high tech. Each library approaches its vision of a makerspace in its own unique way, often relying on the interests of the local community and potential users. Any library, including specialty libraries, can operate a successful makerspace, but they are more commonly seen in public, academic, and K–12 libraries. Makerspaces offer opportunities for collaboration in our communities and institutions. Offerings and key players vary greatly depending on the type and the size of the library.

www.alastore.ala.org
Public Libraries

Public libraries offer amazing opportunities to create makerspaces of all kinds. Where else do you get the chance to use fun activities to bring together so many diverse groups? Public libraries come in many shapes and sizes that allow for an array of creative makerspaces. Public libraries are on the forefront of the makerspace movement. They have a broader spectrum of users and an ability to create spaces that meet the needs of their communities. These spaces range from large to small, from high tech to low tech and all provide training to the public. This includes both one-on-one training and public workshops.

The Charlotte Mecklenburg Public Library’s Idea Box is a great example of what a larger public library can achieve. The Idea Box (www.cmlibrary.org/idea-box) features 3D printers, laser engravers, vinyl cutters, sewing machines, Raspberry Pi, and more. It offers programs on everything from circuitry to sewing to meditation. The facility is a fully staffed space that’s open at specific hours during the week, and it offers programs based not only on technology and available equipment, but also includes an array of creative and crafty pursuits.

Public libraries large and small throughout the United States are eager to embrace the maker explosion. Smaller libraries can easily incorporate fun and exciting programming. Crafting with recycled materials to make jewelry, duct tape crafts, Legos and erector set competitions, and small electronics projects with littleBits, Makey Makey, and Raspberry Pi are filling our libraries with eager learners.

Academic Libraries

Academic libraries operate a bit differently than public libraries. In an academic library makerspace, much of the equipment will be aligned so that it can be applied to the curriculum. Although academic libraries are typically available to enrolled students, some are also open to the public. Training is provided in much the same way as in a public library, but academic libraries also work closely with faculty to develop project-based training.

A typical academic makerspace would include 3D printers, programmable electronics, digital microscopes, video equipment, large format printers, and other items that add to the institution’s curriculum.

Case Western Reserve University’s Think Box (http://thinkbox.case.edu/home) is an amazing space with many resources. Its equipment is extensive and includes items such as a vacuum chamber, miter saws, digital multimeters, band saws, and milling machines. Its projects range from brain scans turned into 3D
puzzles to a human-powered cell phone charger. A space like this gives students endless possibilities to put their education into practice.

Kent State University at Tuscarawas (http://libguides.tusc.kent.edu/makerspace) is a regional campus that’s turned a section of its Academic Learning Commons into a makerspace featuring 3D printers, an Oculus Rift station, a digital microscope, and LEGO MINDSTORMS to excite and inspire students. Its focus is on problem-solving projects, and it’s used its makerspace to solve a problem in its science labs by creating a clip that allows students to attach any type of cell phone to a microscope and take photos and video of their findings. It’s also used 3D printers to create prosthetics for animals in conjunction with the Veterinary Technology program.

K–12 Libraries

Much like the academic library, the K–12 library is geared towards curriculum and exploration. The K–12 makerspace provides an environment for students to experience technology and its applications. Training in these libraries is provided to specific classes, often as project-based learning. These spaces are generally not open to the public and are closely monitored.

Equipment in these spaces is often tied to STEM initiatives and includes items like 3D printers (notice a theme here?), littleBits, Makey Makeys, and electronics-based learning materials. (See the chapters in part II on specific tools for more ideas.) K–12 makerspaces also make good use of apps and software to keep their students in touch with technology. 3D-compatible software such as Tinkercad, Google SketchUp, FreeCAD, and MeshLAB are just some of the options. Apps can be downloaded to school computers and made available to students for use. Some popular apps are Motion Café, Garage Band, iMovie, Kodable, ScratchJr, Stop Motion, and Easy Studio, to name just a few. There’s literally an app for everything, so look around for one that will amaze students.

The staff of school library makerspace may find they have limited amounts of time to work with students. As a response to little time during the school day, Theodore Robinson Intermediate School established an after-school Maker Club, which takes on projects that experiment with stop-motion animation software and art bots.

Mobile Makerspaces

Your makerspace need not be stationary. Some innovative libraries are creating mobile makerspaces which, much like bookmobiles, deliver materials to remote areas.
locations. Mobile makerspaces take the maker movement wherever it is needed. These spaces offer opportunities for collaboration between schools, public, and academic libraries.

Featuring the ever-popular 3D printer, the mobile makerspace offers many pieces of equipment that can travel, such as laser cutters, craft supplies, and even hammers and nails. Much like our bookmobiles, traveling makerspaces like the STEAM Truck (http://community-guilds.org/) bring makerspace innovations to communities that might not otherwise have access to them. What an amazing way to reduce the technology gap for those areas that do not have makerspaces in their libraries or their schools!

Membership Based

Increasingly, makerspaces receive support from membership fees. These makerspaces can be for-profit or nonprofit. For a fee, members are offered access to equipment, training, and the space. This model has also been adopted by a few academic libraries to allow their spaces to be shared by the public.

The focus of membership-based makerspaces varies greatly. From the arts-inspired Artisan’s Asylum’s (http://artisansasylum.com/), with its huge creative spaces where artists can collaborate, to the TechShop’s (www.techshop.ws/) multiple locations and tech focus, there’s a wave of membership-based centers sweeping the country. The membership-based makerspace is supported by membership fees, and often funded by grants that support specific programs for youth.

Determine Your Makerspace Focus

As librarians, we all know the importance of narrowing your focus to make information manageable. The same is true with makerspaces. As you research makerspaces, focus on those with populations that best match your demographics and budget. Ask what works for them and consider mirroring an approach that has already proven successful.

Budget, staffing, and community will be major influences on the focus of your makerspace. Costs can run high if your focus is technology-driven. If you have a low budget for starting your space, consider a mixture of a few higher-dollar items augmented with other low-cost but creative ideas.

The maker movement is not solely based in technology. Yes, it’s a great way to bring technology to those who might not consider using it, but being a maker is about creativity, collaboration, and producing new ideas. Makers exist regardless of budget, so keep that in mind and develop spaces that your library can support and staff.

www.alastore.ala.org
Your space doesn’t even need to be a space. It can be a series of programs, if that’s what fits your library. When funds are unavailable, the focus can be on creative workshops featuring low-cost materials and big ideas. Once you decide what resources you can commit, look for ways to develop programming that fits the demographics of your users.

There are so many directions you can take with your makerspace. A technology-based space is a big draw. Spaces with 3D printing, laser engravers, robotics, and electronics are very popular. These are the typical spaces libraries envision when planning a makerspace.

Crafting and art makerspaces can be created with a little less funding. These spaces can include sewing, quilting, knitting, painting, writing groups, and anything you think will be appealing to your users. Another plus with this type of makerspace is that it can be set up for users of all ages.

Media spaces include video and audio recording studios and go very well with libraries that lend musical instruments. These spaces are becoming more popular, but much like the technology spaces, they require a great deal of staffing, training, and funding.

The focus for your makerspace should reflect your users’ interests and your library’s ability to staff and fund the space. As with any large project, starting with a focus allows you to ensure you’ve covered all the bases. It is very easy for your makerspace vision to branch in multiple directions. Keeping a focus will prevent that from happening and allow you to design the best possible space.

Once your space is up and running and you know what you’ve gotten yourself into, you’ll have a better idea of what you might need to add. Makerspaces are spaces of continuous change. Additions will be constant, but starting with a single focus will allow you to face changes and additions without becoming overwhelmed.

Establish Funding

A major component to any new endeavor is funding, and a makerspace is no different. In fact, because of the potentially huge costs, funding them can be even more of a concern. Whether you are funding the space with your current budget or applying for grants, it’s important to factor in everything you will need to make your space a success.

A makerspace requires a great deal of planning. Using the information from this book will help you lay out a solid plan, but, as with any large project, there will be things that you never saw coming. To start with, plan for the costs of equipment, repairs, maintenance contracts, supplies, staffing, training, and construction, and then add a contingency to be safe.
Once you’ve done that, you can determine if you’ll need outside help to fund your space. Luckily, makerspaces are appealing to grantors, so the time to apply for grants is now.

How to Win a Grant

Larger libraries and institutions will often have a person on staff to guide you through the grant process. Your grant officer knows what grants are available, and their requirements. This is often the case with schools and universities as well. Institutions that already receive federal funding may have restrictions on what grants they can pursue. Be sure to check with your administration before you seek funding.

Grants come in many sizes from many places. Some are highly competitive, some are not. Use your networking skills and talk to people. Talk to people in public office and your state library, and seek out information from others who’ve been successful in obtaining grants. Talk to other makerspace librarians, and ask them if they applied for grants and which ones they received.

Federal grants can be very competitive, but this is not always the case. Federal grants offer big rewards, but require detailed paperwork, stipulations, and reporting. When you’re seeking grants, research past recipients. This will give you a better idea of what grantors want to fund. Federal grants require a great deal of paperwork, so be ready to have your ducks in a row if applying for a federal grant. The Institute of Museum and Library Services (IMLS) is the largest source of federal funding. IMLS grants serve initiatives outlined in the Library Science and Technology Act (LSTA) and are offered throughout all fifty states, with over 2,500 grants available.²

Local grants can be found at the state, county, and community level. These grants can be less competitive than federal grants. They also tend to be more specific and offer less funding. Local grants come from an array of sources, from trust fund distributions to local businesses.

Edutopia.org lists multiple funding sources, including company funding from PG&E Bright Ideas, Botball Robotics, ING Unsung Heroes, and Lowes’ Toolbox for Education.³ Another source for finding grants for libraries and schools is Scholastic’s Activities and Programs web page (www.scholastic.com/librarians/programs/grants.htm), which features information on grants and their requirements from an array of sources, including the Paul G. Allen Family Foundation, the MBNA Foundation, RGK Foundation, the National Endowment for the Humanities, and the W. K. Kellogg Foundation.⁴

www.alastore.ala.org
Crowdfunding is being used to raise money for everything under the sun, so why not for your makerspace? There are many options for setting up crowdfunding; some are open to anything you want to fund and others are specific to education. Give crowdfunding a try. GoFundMe, Kickstarter, Indiegogo, Patreon, and Crowdrise are just a few examples. Educators have found success using DonorsChoose.org, a crowdfunding source that is set up to allow donors to choose educational projects to fund. Some libraries simply share their makerspace-focused Amazon Wish List with patrons and businesses in their local communities. There are many options available today that weren’t available just a few years ago. Try them all out and see what sticks.

Grantors love to see collaborations. Makerspaces are perfect for collaborative ventures among schools, universities, businesses, and small-business development agencies. Seek out local agencies to build partnerships that benefit the community, schools, or local businesses.

Your makerspace is in a prime position to promote technology, small-business creation, and job growth. These are all selling points.

Get Started without Funding

We’d love to think every makerspace will receive unlimited funding, but sad to say that will not always be the case. So, what do you do when you desperately want to start a makerspace but don’t have the funds? You do what makers are meant to do: get creative.

You can have an inviting and appealing makerspace on a shoestring. There are many ideas out there for items that don’t cost an arm and a leg (many of which are discussed in this book). Paper crafts are extremely cost-efficient. From origami to book art (using withdrawn books) to creating apps, you can make it happen on the smallest budget.

The makerspace movement does not rely solely on high-priced technology. Making through shared interests has always been a part of our libraries. We’ve done this through much of the programming we’ve always offered. With some adjustment, this same technique can be applied to your budget makerspace.

Making can be as simple as featuring a building contest with Legos or hosting something more technical like a hackathon. Your makerspace does not always have to provide equipment and materials; you can bring together groups to share what they’ve done and learn from each other.

If you work at a school library, consider hosting a space where students can make and display dioramas, science projects, crafts, and jewelry (something
along the line of friendship bracelets). After all, what you want is for students to come to your library and collaborate in fun ways with fellow students. These kinds of activities in your makerspace would also be a great way to get faculty and librarians working together.

Most of us have computers in our libraries. There are many free design websites. Host some training to help your students create videos on their phones and upload them to free video editing apps, run a contest for the best Vine, create a school YouTube site, encourage the English faculty to have students supplement their literature studies with things like funny video spoofs of a book their class has read.

A public library can offer many of the same activities, and with its larger demographic there are even more low-cost options. Public libraries can host local artists in their spaces. Offer a “bring your own supplies” art project that introduces your users to other budding artists who can continue to meet at your library. Crocheting, knitting, graphic design using free software downloads—there is no end to what you can offer on a no-cost or low budget.

Ask for the things you need. Donated items are a great way to build your makerspace. Let your users know what you need; they may have that item to donate. Conduct a tool drive in your community. Local companies are a good place to look for donations of small machinery and used technology.

If you have a small budget, all the better. You can still build a great space. The most important part of your space is simply that it encourages collaboration. If you can include a few tools and inexpensive equipment and suggest project ideas, you have a makerspace. The tools and equipment do not need to be expensive. Equipment for jewelry-making and scrapbooking are inexpensive, yet are fun and creative ways to interest your users.

You can still add an electronics component to your space without incurring huge costs. Edutopia has featured many ideas for what it refers to as “unmaking.” Who hasn’t wanted to take apart a piece of electronic equipment to discover what’s inside? Unmaking uses recycled electronics to allow users to learn about electronics by taking them apart and putting them back together.

Evaluate Your Space Design

There are many aspects to take into consideration when designing your makerspace. The equipment you install in your makerspace will be very different from what’s found in a traditional library. The way this space is used will be different than any other library space. The library of the past was based around quiet study.
Although we still need quiet spaces, the makerspace will be noisy. Even if you don’t have noisy equipment, a successful space is a collaborative space, and collaboration means people must talk to each other. Excited users are not quiet; nor should they be. Locate your space in an area where talking won’t be disruptive to quiet study areas.

Some libraries will be repurposing a current space to house a makerspace. Be prepared to call the electrician. The maxim “you can’t have too many outlets” has never been more true than it will be in your makerspace. Because many pieces of equipment will be required to support technology and computers, data ports have become the new electrical outlets. Add more than you need, and then add a couple more.

Some equipment will need proper ventilation, which is a bit easier to address in a new space. If you are repurposing an older space, you’ll need to check with an architect to see if ventilation is possible. Heat and moisture can wreak havoc on technology and even some of your supplies. 3D printer filament is temperamental once opened, so a moisture-proof container is a must. Equipment can easily overheat in any environment. Electronics fans are usually inexpensive and can save costly repairs due to overheating.

Supplies can take up much more space than anticipated. If your tools break, you’ll need more tools to fix them. These things quickly collect; and having a space already planned for all the extras will ensure you have a clean area and your supplies are organized for easy access.

Dealing with makerspace waste material is sometimes an afterthought. Much of your makerspace waste is recyclable. Having a place to store recyclable materials is a must. In addition to scraps from filament, paper projects, and metal, you may have waste from batteries or that requires specific disposal and recycling precautions. Research your local outlets to learn where you can safely recycle or dispose of these materials.

If it’s possible to add plumbing to your space, this can be a real plus. Although not essential, a sink in your space can be quite helpful. Makers make messes too, and a convenient way to clean up is quite handy.

Whether your space is large or small, creating a diagram of the way you will lay out your equipment, work areas, electrical outlets, and data ports is essential. Take measurements of equipment before you order it and allow enough space for the equipment to be used properly. For instance, a large-format poster printer takes up more space than a regular printer. Posters need to be laid flat, and professional large-poster cutters need to be mounted to a table, which can take up a huge amount of space. Although you can easily determine how big the printer
Chapter 1 // How to Start a Library Makerspace // 13

will be and plan for its footprint, the space needed to create with printing posters and banners may be a surprise. Legos, Erector Sets, and electronics kits can easily be stored in small areas, but do you have a space designated for users to spread out and use them? If not just improvise, as Diana Rendina did for her Lego Wall at Stewart Middle Magnet School in Tampa, Florida. Diana created space on a wall for building with Legos to optimize her small space.9

Computers will take up a lot of space if you are using equipment that needs specific software to operate. 3D printers, vinyl cutters, and data-driven equipment will need space for the computers that support them.

When planning your space, there are many considerations that won’t come to mind. Besides planning for electrical, bandwidth, and the size and layout of your equipment, you will need to envision and design a plan that includes space for all the extras. Keep in mind that workspace and supplies storage will be just as essential to your space as the equipment.

Although there are many considerations when creating your makerspace, the main thing is to create a space that fits the needs of your community. Once you determine what kind of makerspace you want to establish, look at the budget you have available and make a plan. Don’t be deterred by the cost—there are always ways to create an effective makerspace on any budget.

Getting Started—Equipment Lists

Here are some sample starter equipment lists for you to consider, depending on the type of makerspace you’ll be building as well as your library’s budget.

Technology-Focused Makerspace Starter Kit
(Estimated Cost $3,300)10

- Makey Makey ($50)
- Squishy Circuits ($25)
- Minecraft EDU ($25)
- LEDs ($30)
- LED batteries ($14)
- copper tape ($20)
- Scratch (free)
- Tackk (Free documentation website)

- paper/vinyl cutter ($350)
- 3D printer ($2,500)
- Arduino Adventures parts kit ($60)
- Raspberry Pi kit ($90)
- Legos ($50)
- Snap Circuits kit ($60)
Bigger Budget Technology-Focused Makerspace Starter Kit
(Estimated Cost $21,000)\(^\text{11}\)

- OWI Robotic Arm Edge robot arm ($50)
- LEGO MINDSTORMS Education NXT Base Set ($500)
- GCC Expert 24 Vinyl Cutting Plotter with stand and heat transfer vinyl pack ($820)
- 3Doodler pen ($99)
- Anthrotab 20SSPW multi-charging unit ($614)
- Zotac ZBOX-ID90-P Intel Core i7 3770T, 4GB RAM, 500G HDD, Intel HD4000 Graphics integrated by CPU, Mini PC, and 55-inch GVision large format touch screen display (for presentation room) ($595)
- Logitech MK550 Black USB RF Wireless Ergonomic Wave Combo ($80)
- Erector Set ($81)
- Architect Lego set ($160)
- FlipBooKit Moto ($99)
- EL-Wire starter kit, 25 feet ($40)
- Starter Pack for Arduino (includes Arduino Uno R3) ($65)
- Flip video camera—White, 30 minutes ($80)
- Parallax BOEBot Robot for Arduino Kit ($124)
- Ultimaker PLA filament spools (assorted colors) ($65 per spool)
- Microsoft Surface 2, 64 GB ($449)
- Microsoft Surface Power Cover ($199)
- Wacom Intuos Pro Pen & Touch Special Edition ($379)
- Accucut Original Mark IV Super Starter Set—Early Childhood ($1,999)
- Xyron 2500 Machine ($1,480)
- Ultimaker 2 3D printer ($2,500)
- LulzBot TAZ ($2,200)
- Canon imagePROGRAF iPF750 36-inch large format printer ($3,495)
- digital cameras ($259 each)
- green screen and lighting kit ($179)
- Cricut Scrapbooking vinyl/leather/paper cutting machine ($250)
- Sprout 3D scanner/printer ($3,000)
- Adobe Photoshop ($179)
Media—Video-Focused Makerspace Starter Kit
(Estimated Cost $7,200)

Hardware
- Canon PowerShot A2300 digital camera ($211)
- Canon Eos Rebel T3i digital camera ($250)
- Sonny Bloggie camcorder ($175)
- Panasonic camcorder ($500)
- Kodak Play Touch video camera ($200)
- flash drives, SD cards, and readers ($5 each)
- HP Photosmart 5510 color scanner/printer ($385)
- Digital Concepts tripod ($20)
- 85-watt photo light ($15)
- 10 x 9-foot green screen wall ($75)
- two Shure SM28 microphones with stands ($99 each)
- HP Compaq 6200 Pro SFF computer ($215)
- HP Compaq 4000 Pro SFF computer ($109)
- 27-inch iMac computer ($2,000)

Software
- Adobe CS 6 Production Premium—Photoshop, Illustrator, Premiere Pro, and more ($2,600)
- iLife Suite—Garage Band, iMovie, and iPhoto ($45)
- Audacity—for audio recording (free)
- Cyberlink Power Director 8—movie-making software ($25)
- Microsoft Office ($90)

Media—Sound-Focused Makerspace Starter Kit
(Estimated Cost $7,500)

- ProTools ($299)
- Sibelius ($280)
- Audacity (free)
- Garage Band ($45)

Video
- Final Cut Pro ($300)
- Adobe Creative Suite ($1,500)
- iMovie. ($15)
Audio

- iMac with software and 27-inch monitor ($1,763)
- Eleven Rack guitar rack ($699)
- Scarlett 2i4 USB audio interface ($169)
- Novation LaunchKey 49 MIDI board with drum pads ($150)
- Shure SM57 dynamic microphone ($99)
- Blue Yeti Pro USB condenser microphone ($150)
- condenser shotgun microphone ($80)
- Sennheiser headphones ($90)
- handheld boom poles ($125)

Video/Film

- Canon XA10 HD camcorder ($800)
- camera tripod with revolving head ($25)
- three stand-up lights with softbox/diffuser kits ($175)
- green room (green walls/floor) ($100)
- portable green screen ($75)
- Canon Rebel T5i ($600)

Low Budget, Elementary School-Focused Makerspace Starter Kit (Estimated Cost $500−$1,000)

- sewing supplies (needles, thread, scissors, fabric) ($100)
- ribbon, yarn, string ($30)
- Legos, K’NEX, building blocks ($50)
- all types of paper (wrapping paper, card stock, construction paper, printer paper, scrapbook) ($200)
- Post-it Notes ($50)
- markers, pens, crayons, etc. ($50)
- cardboard of any kind, from food packaging to large appliances (free; flattened please)
- cardboard tubes from wrapping paper, toilet paper, paper towel, etc. (free)
- Play-Doh ($20)
- circuitry kits (can be purchased online) ($20–100)
- craft supplies (cotton balls, popsicle sticks, paint, tape, low temperature hot glue gun, glue gun sticks, glue and glue sticks, toothpicks) ($100)
- canvas, art supplies ($100 and up)
- cameras, photography equipment ($50 and up)

www.alastore.ala.org
Chapter 1 // How to Start a Library Makerspace // 17

• things to take apart, such as old or broken electronics and small devices (donations)
• hammers, screwdrivers, pliers ($100)
• nails, screws, bolts ($50)
• storage containers—tubs, baskets ($50)
• dominos, marbles ($50)
• playing cards (used for building items) ($20)
• batteries (various sizes) ($50)

Dream Budget—Milling/Power Equipment Focused Makerspace

Equipment List (Estimated Cost $30,000—$50,000)

• large Matsuura RA-1F Vertical CNC milling station (Red Dragon) ($2,000)
• tabletop gear lathe (Central Machinery) ($4,000)
• drill press (Speedway) ($100)
• metal lathe (South Bend Lathe Works) ($4,000)
• bandsaw, vertical (Do-All) ($2,000)
• drill presses and table (Rockwell) ($600)
• hydraulic press ($300)
• disc sander ($200)
• bench grinder (Farm & Fleet) ($40)
• cut-off/chop saw (Milwaukee) ($200)
• 7 x 12-inch bandsaw, vertical/horizontal with coolant tank (Wilton) ($2,000)
• bench top lathe (Delta) ($500)
• hand grinder (Skil) ($50)
• drill bits, taps, etc. ($50)
• nuts, bolts, etc. ($50)
• large vise ($30)
• forge ($1,265)
• casting furnace ($55)
• centrifugal spin caster ($500)
• anvil ($100)
• post vise ($1.600)
• forging hammers ($200)
• electric arc welder (Lincoln) ($450)
• ESAB PCM-1125 plasma cutter ($679)
• compound miter saw (Dewalt) ($399)
• CNC router ($2,000)
• router table (Craftsman) ($200)
• scroll saw (Delta) ($45)
• lathe tools ($75)
• combination disc/belt sander (Craftsman) ($89)
• laser cutter ($3,499)
• MakerBot Replicator ($2,500)

Identify Your New Roles

Librarians are no strangers to adapting to new technology and new environments. However, the pace at which we need to adapt is increasing. Librarians who embrace this world of constant change have easily moved into new roles, including the makerspace. Managers of makerspaces and technology-driven spaces must set clear expectations and provide professional development to adequately prepare staff for their new roles. We do a huge disservice to our users and our staff when we roll out new equipment without first providing the training needed to operate and troubleshoot the equipment.

Determine Expectations

We all have lofty expectations for librarians who operate makerspaces. Realistically, we won’t necessarily find a librarian who knows everything there is to know about each piece of equipment. In this case, as with any position in the library, we’re looking for more than one specific skill set. Ideally, we’d love to fill these positions with librarians who’ve been trained in engineering and information technology, but that’s not very realistic. As with any library position, we look for approachability, creativity, and the drive to be a lifelong learner. These qualities are essential for the makerspace librarian. There will always be users who need friendly, knowledgeable assistance to help them find opportunities to use makerspaces creatively. I’ve found that users relate well to librarians who’ve started as novices and learned through trial and error. It seems to introduce a certain comfort level, especially for curious new users who might be intimidated by the equipment.
A
Abbas, J., 35
ABS plastic
qualities of, 89
toxicity in, 81
academic libraries
class visits to makerspace, 58
cross-disciplinary work encouraged by, 347
Lego projects, 203–204
makerspaces of, 5–6, 349
user visions for makerspace, 55
access
library for access to information, 346
library makerspaces support, 34–35
accessibility
of makerspace, 334
of mobile makerspace, 316
acrylic, 234–236
active learning
with Legos, 194, 209
overview of, 30–31
Adafruit
for Arduino purchase, 137
Arduino Selection Guide, 136
Flora, 160, 291
Gemma, 161
Raspberry Pi purchase from, 116
wearable electronics tutorial, 162
ADDIE (analyze, design, develop, implement, evaluate) model
instructional design models based on, 38
learning event, design of, 41
rapid prototyping and, 38
advertising, 334
Afinia H480 3D printer, 91
Agency by Design, 62, 64
agreement, 76
Albertsons Library’s MakerLab
See Boise State University Albertsons Library’s MakerLab
All About Pi project, 123–125
Allen County Public Library, 329
ALSC (Association for Library Service to Children), 202
“Alternative Drone Technologies for Aerial Photography and Videography” workshop, 282
Amazon
Prime Air, 264, 278
Raspberry Pi purchase from, 116
American Association of School Librarians, 353–354
American Library Association
for 3D printer inquiries, 93
values of, 365
analysis, 38
Anderson, Chris, 351
Android OS
Cardboard Virtual Tours project, 190
Google Cardboard smartphone requirements, 182–183
Google Cardboard workshop and, 188
Google Cardboard/VR games, 190–191
anode, 165
Anthony, Laura, 296
applications
Google Cardboard app, 180–182
Google Cardboard workshop, 187–189
in K–12 library makerspaces, 6
MIT App Inventor 2 projects, 298–299
AR (augmented reality), 357–358
Arapahoe Library, 167
ARC device, 103
Arduino
board, tips for, 138–139
board, use of, 137–138
boards, major available, 136–137
description of, 135–136
electronic components, 140
Flora and, 160
Gemma and, 161
libraries’ use of, 141
LilyPad’s use of, 158–159
Multiwii upload to, 282
www.alastore.ala.org
Arduino (continued)
physical computing with, 290–291
projects, 142–155
wearable electronics, programming, 163
Arduino IDE
Arduino Blink project, 143–146
for Arduino Setup project, 142–143
description of, 135, 136
Arduino Setup project, 142–143
Arduino Uno
as most versatile board, 136
Room Occupancy Sensor project, 151–155
for Temperature Sensor project, 148–151
for Traffic Light project, 146–148
use of, 137–138
ArduPilot Flight Controller, 282
Aristotle, 33
art
Interactive Artwork with Paper Circuits
project, 226–227
with Legos, 198
Art Bot project, 300
art makerspace
as low cost, 8
at public library, 11
The Art of the Brick (Nathan Sawaya exhibition), 198
Artisan's Asylum's, 7
Arts and Scraps, 319
Asgarian, R., 167
Asimov, Isaac, 246
assessment
backward design oriented to, 40
of library makerspaces, 360–361
of makerspace cost/benefits, 333
Association for Library Service to Children (ALSC), 202
Association for Unmanned Vehicle Systems International, 264
Association of College and Research Libraries, 354
augmented reality (AR), 357–358
autism, 335
B
backward design, 39–40
badging, digital, 336
Bare Conductive, 220
battery
circuitry kits, use of, 221
coin battery, 250
drone assembly, 267, 270, 273–274
troubleshooting circuitry project, 222, 223
battery holders, 166, 169
BeagleBone, 290
Beginner Robots with littleBits project, 227
behavior, 335
Best Library Contest, 206
Birch, L., 158
Blink project, 143–146
block parties, Lego, 201–202
clog
for keeping up with maker movement, 340–341
for makerspace user training, 22
BlueJ, 261
Bluetooth, 184
Boise Public Library, 55
Boise State University Albertsons Library's MakerLab
Creative Technologies Association, 66–67
diversity of users, 63
inclusive culture at, 60–61
bookmark, LED Fabric Bookmarks project,
168–169
bookmobile, 308
Booth, Char, 288
bracelet, LED Cuff Bracelets project, 169–170
Bradbury, Ray, 175
Branson, R. K., 38
Brasier, Gregory, 51–69
breadboard
solderless, 138
for Traffic Light project, 146–148
BRIC Arts | Media | Bklyn, 329
Brick Fanatics website, 195
Bristlebots project, 251–252
brochure, for makerspace, 27
Bronkar, Cherie, 3–27
Brooklyn Central Library, 296
Brooklyn Public Library, 329
Brown, Deana, 51–69
Brown, Tim, 355
Bruffee, K. A., 31
Bruning, Lynne, 164
Bruno, Tom, 175–191
Buck Institute of Education, 32
budget, 331–332
See also funding
Buechley, L.
LilyPad Arduino, release of, 158
on Make cover images, 60
Sew Electric, 162
build plate, 95
build platform
leveling, 95
of MakerBot Replicator 2X, 93–94
troubleshooting mechanical issues, 102
Build Your Own Cardboard Device project,
186–187

www.alastore.ala.org
building
drones, assembly of, 269–274
drones, skills/tools involved, 268–269
physical robot, 246, 248
building permit, 78
Business Hours Decal project, 238–239
buzzers, 165–166

C
Cabell Library at Virginia Commonwealth University, 203
CAD software, 89
California State University, San Bernardino, 141
camera, 265
Cardboard
See Google Cardboard
Cardboard Virtual Tours project, 190
Carnegie, Andrew, 31
Carnegie, Dale, 30
Carnegie Library of Pittsburgh, 336
case, for Raspberry Pi, 118, 119
Case Western Reserve University, 5–6
cathode, 165
Certificate of Waiver or Authorization (COA), 265, 277–278
change, 35–36
Charlotte Mecklenburg Public Library, 5
chat, 65
Chattahoochee Valley Libraries, 297
Chattanooga Public Library, 4th Floor at, 233
chemical structure, 108–109
Circuit Stickers, 218–219, 225–226
Chibitronics, 218–219
Chicago Public Library, Maker Lab at, 233
children, usage policies for makerspace, 26
Chinn, C. A., 32
Chiolerio, A., 157
Choregraphe, 260
circuitry
Circuit Stickers, 218–219
circuitry kits, how to use, 221–222
circuitry kits, in general, 213–214
conductive materials, 220
Electrochromatic Circuits project, 171–172
libraries’ use of, 223–224
littleBits, 215–216
Makey Makey, 214–215
projects, 224–228
Snap Circuits, 217–218
tips/troubleshooting, 222–223
Toy Hacking project, 300
wearable electronics, safety of, 162
wearable electronics, teaching about, 157
circuitry kits
in general, 213–214
libraries’ use of, 223–224
littleBits, 215–216
Makey Makey, 214–215
use of, 221–222
CityScope (Lego model), 198
Clark, Chad, 287–302
class visits, 58
cleaning
of Legos, 200
of makerspace/equipment, 80
Cleveland Public Library, 336–337
clothing, 76
See also wearable electronics
CNC
See computer numerical control
COA (Certificate of Waiver or Authorization), 265, 277–278
cost rack, 79
code, hacking with, 289
Code Avengers, 261
Code HS, 262
code of conduct, 335
Codeacademy.com, 261
Code.org, 261
Coder Dojo, 296–297
coding
Arduino programming tips, 138–139
circuitry kits and, 222
Coder Dojo, 296–297
drone flight computer, 268
Hour of Code event, 296
learning to code with robots, 257–260
Makey Makey with Scratch, 215
robots, 246, 247
See also programming
Cohen, Kris, 59
coin battery, 250
Colegrove, Tod, 347
collaboration
for community of makers, 335–336
grant for makerspace and, 10
library makerspaces for, 347
makerspace encourages, 11
noise with, 12
with Raspberry Pi, 113
as twenty-first century skill, 353, 354
collaborative learning, 31
comments, in Arduino, 139
commercial 3D printing services, 102
communication
about mobile makerspaces, 317
communication (continued)
in diverse maker culture, 65–66
as twenty-first century skill, 353
community
creation of, 66–67
donations of mobile makerspace supplies, 314
embracing, 334–335
funding for makerspace from, 329
hackerspaces for building, 289, 302
libraries as community hubs, 347
of makers, building, 335–338
makerspace, creation of, 66–67
makerspace focus on, 51–52
mobile makerspace, engagement with, 310
mobile makerspace, reasons for, 309
outreach, 59–60
of practice, building, 45–46
Raspberry Pi community, interaction with, 119–120
understanding, 332–334
competitions, 45
Compton, Mary, 307–323
computer
for CNC, 231
for coding/programming robotics project, 247
space for in makerspace design, 13
computer numerical control (CNC)
description of, 229
fully enclosed, 81
libraries use of, 233
projects with, 234–243
safety suggestions for, 82
software/hardware, 230–231
tips for, 231–233
Computer Science Education Week, 296
conductive ink, 226–227
conductive materials, 220
conductive tape, 218–219, 220
conductive thread
 Electrochromatic Circuits project, 171–172
 insulation techniques for, 164
 in LED Fabric Bookmarks project, 169
 Plush Game Controllers project, 172–173
 use of, 163–164
conferences, 338
Considine, Sue, 337–338
construction kits, 158
constructionism
overview of, 33
prototyping as pedagogy, 37
for safe makerspace environment, 59
control software, of 3D printer, 91
Cooper, Tyler, 165
Copenhagen University Library, 203, 207
copper tape
 Circuit Stickers, 218–219
 for circuitry projects, 220
 for Interactive Artwork with Paper Circuits project, 226–227
 for Light-Up Board Games project, 225–226
Costello, Laura, 29–49
costs
 of drones, 266–267
 fees, alternatives to, 328–331
 fees for patrons to cover, 326–328
 of makerspace, sustaining funding, 325–326
 makerspace focus and, 7–8
 makerspace policy and, 24–25
 of mobile makerspace, 311–313
 starting makerspace without funding, 10–11
CR1220 PCB Mount Battery, 166
crafting makerspace
 as low cost, 8
 Scrapmobile, 319
 3D printing for craft project, 103
Craigslist, 199
crash, 232
Create a Virtual Magic 8-Ball project, 301
Create Your Own Cardboard Content project, 189–190
“Create Your Own Character” Coloring Contest, 205
Creative Technologies Association (CTA), 66–67
creativity
 applied, 364
 assessment of library makerspace and, 360
 library makerspace programming and, 354–355
 opportunities for with makerspaces, 363
 as twenty-first century skill, 353, 354
credentials, 336
Cricut Design Space, 230
Cricut Explore, 230
critical thinking, 353
crowdfunding
 for makerspace funding, 330–331
 for Oculus Rift, 176
 options for setting up, 10
CTA (Creative Technologies Association), 66–67
Cubelets
 link for purchasing, 246
 project, 255–256
culture
 of creativity, Legos and, 209
 hackerspace program and, 288
 of makerspace, 4
 of safety, creation of, 74
skill development from, 61–65
See also maker culture, diverse
Cupertino Library, 297
curriculum
incorporation of making into, 336
learning events and, 41
materials for library makerspaces, 43–44
cutting machine
Business Hours Decal project, 238–239
overview of, 230
Personalized Cat Decal project, 239–241
T-Shirts I and II project, 241–243

D
Danbury Hackerspace @ the Innovation Center, 297
Darien Public Library, 282
Dash and Dot robots
link for purchasing, 246
project for learning to code with, 257–258
data, 183–184
data ports, 12
data visualization, 359
DC Public Library, 297
decal
Business Hours Decal project, 238–239
Personalized Cat Decal project, 239–241
T-Shirts I and II project, 241–243
Delaney, Ann, 51–69
Delecki, Kevin, 73–84
Deloitte Consulting, 61
Demco, 331
Demmons, Chris, 279
Denver Public Library (DPL)
“Open Code sessions with Coder Dojo,” 296–297
Raspberry Pi use at, 120–122
design
ADDIE model, 38
instructional design, basics of, 37–38
instructional design models, 38–40
of makerspace, evaluation of, 11–13
of makerspace for safety, 78–79
design challenge, 224
design thinking
definition of, 62
library makerspace programming and, 355–356
Dewey, John, 31
digital badging, 336
digital divide, 55–57
Digital Harbor Foundation
FabSLAM competition, 45
Maker Camp programs, 103
resources of, 44
digital light processing (DLP), 88
digitally interfaced book, 301–302
Digitally Interfaced Book: Paper, Graphite, Makey Makey, Scratch, and Imagination (National Writing Project), 302
Dimension control, 97
diorama, 224–225
Disney, 177
Dive City Rollercoaster, 188–189
diversity
definition of, 52
of makers/makerspaces, 351–353
of makerspace users, 63
See also maker culture, diverse
DIY Cardboard kits
Build Your Own Cardboard Device project, 186–187
options for, 176–178
DJI, 266
DLP (digital light processing), 88
documentation, 45
dollar store, 294
donations
of Legos, 199
for makerspace, 11, 329–330
of mobile makerspace supplies, 314
DonorsChoose.org, 10, 330–331
Doodle Fab, 106–107
DPL
See Denver Public Library
driver, of mobile makerspace, 316
“Drone Buying Guide” workshop, 282–283
drone racing, 283
drones
assembly of, 269–274
building, skills/tools involved in, 268–269
conclusion about, 283
drone part list, 283–285
flight skills, 274–276
future of library makerspaces and, 358–359
history of, 265
libraries’ use of, 277–279
overview of, 263–265
projects with, 279–283
regulations, 266
tips for, 276–277
types, brands, models of, 266–267
use of, 267
Dumas, Rob, 229–243
Dunbar-Hester, C., 62–63
Duncan, R. G., 32
Duncan, Suzette, 54
DUPLO Lego brick, 195
“dyna-micro,” 114
Ebay, 199

Education
- library as agent of change, 35–36
- maker education as learner-driven process, 36
- maker education of library staff, 361–362
- mobile makerspace and, 320

Edutopia
- funding sources listed by, 9
- for lesson plans, 43
- “unmaking” ideas, 11

Edwards, S. L., 64

Egbert, Megan, 157–173

Eight Learning Events model, 40

Einstein, Albert, 32

electricity, 317

See also circuitry

Electrochromatic Circuits project, 171–172

electronic components, of Arduino, 140

electronic cutting machine
- See cutting machine

Electronic Speed Controller (ESC), 270–271, 272

electronics, 293–294

See also wearable electronics

Elenco, Snap Circuits, 217

Eliasson, Olafur, 195, 198

Empathy, 62

Empowerment
- makerspace and, 52
- micro-empowerment, 60–61
- of users, mission of, 63–64
- of users in makerspace, 56

Entrepreneurship
- argument about makerspaces and, 364
- business startup workshops for, 22

Environment
- of library makerspaces, 37
- open/inclusive, 364–365
- welcoming, safe, low pressure makerspace, 337

See also design

Equipment
- charging fees to patrons, 326–328
- costs of, 328
- costs of, policy for, 24–25
- diverse maker culture and, 51–53
- makerspace design and, 11–13
- makerspace equipment safety, 80–83
- manuals for, 19
- for mobile makerspace, 313–314
- policy for makerspace, 23–24
- staff training for, 20, 21
- supervision of makerspace, 75–76
- usage policies for, 25–26

User safety in makerspace, 76–77

Workspace safety, design for, 78–80

Equipment lists
- bigger budget technology-focused makerspace starter kit, 14
- dream budget-milling/power equipment focused makerspace equipment list, 17–18
- low budget, elementary school-focused makerspace starter kit, 16–17
- for makerspace, 13–18
- media-sound-focused makerspace starter kit, 15–16
- media-video-focused makerspace starter kit, 15
- technology-focused makerspace starter kit, 13

ESC (Electronic Speed Controller), 270–271, 272

ETextile Lounge, 162

e-textiles
- See wearable electronics

“eTextiles: How to Select Fabric” (Bruning), 164

Ethics, hacker, 287

Etsy
- Lego creations on, 194
- rise of, 349, 350

Evaluation
- ADDIE model, 39
- of makerspace program, 45

See also assessment

Events
- charging patrons fee for, 327–328
- for creating community, 66–67
- exhibitions, of hackerspace program, 292

Expectations
- for CNC class, 231, 232
- for makerspace, 18

Extruder
- filament, load/unload, 94–95
- of MakerBot Replicator 2X, 93
- printing of 3D model, 99
- troubleshooting mechanical issues, 101–102

Eye protection, 76

F

FAA
- See Federal Aviation Administration

Fabric
- See Federal Aviation Administration

LED Cuff Bracelets project, 169–170

LED Fabric Bookmarks project, 168–169

Light Locked Wallets project, 170–171

Plush Game Controllers project, 172–173

Selection/care of, 164–165

FabSLAM competition, 45

Face protection, 76
Facebook
 groups, list of, 338–339
 Legos presence on, 195
 for makerspace user training, 22
Farnham, S. D., 63
Fast, Grayson, 103–104
Fayetteville Free Library
 budget for makerspace, 332
 community-led makerspace of, 333
 internal relationships in library, 337–338
 volunteer program of, 336
FDTI breakout board, 159–160
Federal Aviation Administration (FAA)
 COA from, 265
 drone regulations, 266, 358
 federal grants, 9
fee
 alternatives to, 328–331
 charging patrons, 326–328
 for makerspace, 25
filament
 loading/unloading, 94–95
 troubleshooting mechanical issues, 101–102
file types, 96
filtration, 79, 82
Finals Stressbusters project, 203
Finch Robot, 246, 259–260
drift extinguisher, 79
First Person View (FPV)
 description of, 264
 drone buying workshop, 282–283
 drone images displayed to, 263
 first-aid kits, 79
Fisher, Erin
 on guiding purpose of makerspace, 53
 on makerspace equipment, 51
Fixit Clinic, 295–296
Fleischer, Corey, 103
flight computer, 272
flight controller, 267, 272
flight skills, drones, 274–276
flooring, of makerspace, 78
Flora, 160, 164–165
Florida State University, 38
focus, of makerspace, 7–8
focus group, 333
“Food for Fines” programs, 330
Forest, C., 69
Fourth Amendment, 264, 267
FPV
 See First Person View
“Framework for 21st Century Learning” (P21), 353
Framework for Information Literacy for Higher Education (ACRL), 354
free play, 196, 204
Fried, Limor, 160
Frimpong, Simon-Peter, 103–104
FryskLab, 318
Full Spectrum Hobby Laser, 231
Full Spectrum RetinaEngrave, 230
funding
 fees, alternatives to, 328–331
 fees for patrons, 326–328
 getting started without, 10–11
 grant, winning, 9–10
 for makerspace, establishment of, 8–10
 for makerspace, sustainability of, 325–326
 makerspace focus and, 7–8
 for mobile makerspace, preparation for, 310–311
furniture, 316
fused deposition modeling (FDM) 3D printer
 description of, 88–89
 MakerBot Replicator 2x, 3D printing with, 93–102
types of, 91–93
fused filament fabrication (FFF) printer, 81
future of library makerspaces
 See library makerspaces, future of
G
game controllers, 172–173
games, 190–191
Garfield County Libraries, 122
Gartner, Inc., 356, 357–358
gas, 311–312
G-code
 in 3D printing process, 89
 as CNC language, 230
 control software and, 91
Geek Feminism, 335
Gemma, 161
gender
 of Maker Faire attendees, 352
 of makers, 59–60, 63
George Lucas Educational Foundation, 43
Georgia Tech Invention Studio, 68–69
GermBuster VR game, Realiteer, 184, 189, 190
Gershenfeld, Neil, 302
gesture sensors, 358
Getting Hands on with Soft Circuits: A Workshop Facilitator’s Guide (Lovell), 166
Getting Started with Adafruit FLORA (Stern & Cooper), 165
Gibson, William, 175
Ginsberg, Sharona, 325–341
www.alastore.ala.org
Global Positioning System (GPS), 263
GoFundMe, 330
Gomes, Patricia, 57
Google Cardboard
Create Your Own Cardboard Content project, 189–190
creating your own VR content, 181–182
development of, 176
DIY Cardboard kits, 176–178
downloading app, 180
libraries’ use of, 185
locating VR applications, games, content, 181
projects, 186–191
Samsung VR Gear, 179
tips for, 182–185
View-Master Virtual Reality Viewer, 178–179
virtual reality, development of, 175–176
workshop, 187–189
Google Coder Cloud Server project, 131–132
Google Glass
at Arapahoe Library, 167
as augmented reality technology, 357
derision for, 176
Google Cardboard and, 185
Google Maps, 190
Google Project Loon, 279
Google+ communities, 339
GPS (Global Positioning System), 263
grant
how to win, 9–10
sustainability of makerspace, 331–332
GrantForward, 331
Grants.gov, 331
Graves, Colleen, 330, 333
greeting cards, 227–228
grounding, 118
Grumet, M., 37
guidelines, 76–77

Hackasaurus project, 299
hackathons, 4, 297
hacker, 288
hacker ethics, 287
hackerspace
in libraries, examples of, 297–298
rise of, 287–288
hackerspace programs
Coder Dojo, 296–297
Fixit Clinics, 295–296
hackathons, library examples of, 297
hackerspace, rise of, 287–288
Hour of Code, 296
in libraries, examples of, 297–298
in library, reasons for, 288–289
planning for, 291–292
projects, 298–302
tips for, 292–295
types of, 289–291
Hackey Hack! 261
Hacking with Python project, 301
Hacking with Scratch project, 301–302
Hafner, Arthur Wayne, 346
Hale, Shannon, 334
HAM Radio to IP Gateway project, 122
hand protection, 76
hand tools, 83
hardware
computer numerical control, 230–231
hacking old hardware, 290
Harrop, Wendy, 213–228
Harvard Business Review, 355
Haugh, Dana, 29–49
HELI-X, 276
Hello Purr, 298
Highland Park Public Library, 300
Hlubinka, M., 74
Hmelo-Silver, C. E., 32
Holman, Will, 348
Horizon Reports (New Media Consortium), 356
Hour of Code, 296
Houston Public Library, 202
“How to Build a Drone” workshop, 280–281
How to Make Snowflakes with Python Turtle project, 301
HTC Vive, 185, 357
Hull, Charles, 87–88
Hume, Tim, 263
Hunt, Ryan, 307–323
“Hype Cycle for Emerging Technologies” (Gartner, Inc.), 356, 357–358

Inclusion
at Albertsons Library’s MakerLab, 60–61
community outreach for, 59–60
empowerment of users, 63–64
future of library makerspaces and, 364–365
in makerspace advertising, 334

www.alastore.ala.org
Leclercq, Dieudonné, 40
LED Cuff Bracelets project, 169–170
LED Fabric Bookmarks project, 168–169
LED lights
Arduino Blink project, 143–146
on Arduino board, 138
of Arduino board, 140
Circuit Stickers, 218–219
Illuminated Greeting Cards project, 227–228
LED Cuff Bracelets project, 169–170
LED Fabric Bookmarks project, 168–169
Light-Up Board Games project, 225–226
of LilyPad, 159
Room Occupancy Sensor project, 151–155
Traffic Light project, 146–148
wearable electronics, tips for, 165–166
Leggette, Jacob, 103
Lego BIONICLE, 195
Lego block parties, 201–202
LEGOLego Education, 197, 198
LEGO Engineering website, 197
LEGO Group
history of Legos, 194
Legos kits from, 199
number of Legos produced by, 193
LEGOLego MINDSTORMS, 195, 197, 202
LEGOLego MINDSTORMS EV3, 246, 256–257
The Lego Movie (film), 195
The Lego Movie 2 (film), 195
Lego Serious Play (LSP)
for Lego workshop, 207–208
team building with, 196–197
at University Campus Suffolk, 204
LEGOLego Systems, 202
Lego Technic, 195
#LeGOMAKE study, 208
Legos
art with, 198
conclusion about, 209
designing, prototyping, building, 197
free play, 196
history of, 194
Lego playing station, 204–205
libraries’ use of, 201–204
in library, tips for, 199–201
physical computing with, 290–291
production of, 193
projects with, 204–208
teaching/learning with, 197–198
team building with, 196–197
types of Lego bricks, 195
use of, 194–195, 196
workshop, 207–208
lesson plans
creating, 41
curricular materials, finding, 43–44
lesson plan worksheet, 42–43
lessons learned, about mobile makerspaces, 321–322
levels of engagement, 52
Lewis, D., 73
Lewis, J., 260
librarian
expectations for makerspaces, 18
hackerspace programs, tips for, 292–295
library as agent of change, 35–36
library-wide maker culture with internal promotion, 337–338
maker education of library staff, 361–362
professional development, 22–23
roles, identifying new, 18
staff training for makerspace, 19–21
libraries
in Arduino, 139
Arduino, use of, 141
circuitry projects, use of, 223–224
computer numerical control, use of, 233
drones, use of, 277–279
Google Cardboard, use of, 185
hackerspace programs, examples of, 295–298
hackerspace programs in, 297–298
hackerspace programs in, reasons for, 288–289
hackerspace programs, planning for, 291–292
hackerspace programs, tips for, 292–295
Legos, free play with, 196
Legos, team building with, 196–197
Legos, use of, 201–204
Libraries in, tips for, 199–201
library makerspaces, present time, 346–347
library-wide maker culture, 337–338
makerspace culture in, 4
mobile makerspace, reasons for, 308–309
Raspberry Pi projects, 122–132
Raspberry Pi use in, 120–122
robotics in, 246–250
3D printing in specific subject areas, 109–110
3D printing projects, 104–109
3D printing use cases, 102–104
wearable electronics, use of, 157–158, 167
library makerspaces
community of practice, 45–46
curricular materials, finding, 43–44
environment of, 37
implementation/evaluation of programs in, 44–45
instructional design, 37–38
instructional design models, 38–40
learning event, designing, 41
lesson plans/activities, 41–43
library as learning space, 29–30
pedagogy, connecting theory to practice, 33–34
pedagogy of, 30–33
support of institutional/pedagogical objectives, 34–37
types of, 4–7
See also makerspace; safety
library makerspaces, future of
dark side of future, 363–364
diversity of makers/makerspaces, 351–353
emerging technologies and, 356–360
inclusive future, 364–365
maker education of library staff, 361–362
metrics/assessment, 360–361
present situation, 346–347
programming of, 354–356
prophecy, risks of, 345
short-term/long-term future, 350–351
staffing library makerspaces in future, 362
staying power of makerspaces, 347–350
twenty-first century skills and, 353–354
Library Science and Technology Act (LSTA), 9
library use cases, 102–104
Light Locked Wallets project, 170–171
Light-Up Board Games project, 225–226
LilyPad
Arduino SimpleSnap, 159
Arduino USB, 159
overview of, 158–160
physical computing with, 291
ProtoSnap, 159
washing of fabric and, 164–165
LilyTiny, 159
LilyTwinkie, 159–160
LINC (Learning and Information Commons), 332
listservs, 341
lithium polymer (LiPo) batteries
charging, 277
for drone assembly, 273–274
for drones, 267
littleBits
Beginner Robots with littleBits project, 227
overview of, 215–216
local grants, 9
Lotts, Megan, 193–209
Lovell, Emily, 166
LSP
See Lego Serious Play
LSTA (Library Science and Technology Act), 9
Luckey, Palmer, 176
LulzBot Taz 5 printer, 91, 92
Lynda.com, 262
M
Mac OS X, 142–143
Magic-8 Ball project, 301
MagPi Magazine, 119–120, 132
mailing lists, 341
maintenance
of makerspace equipment, 80
of mobile makerspace, cost of, 312–313
Main, Chad, 263–285
Make Magazine
on gender of makers, 59–60
“Getting Started with Raspberry Pi” guide, 119
Maker Faires sponsored by, 349
readership of, 352
3D printer recommendations, 92
Make Music with Sonic Pi project, 125–127
“make-a-thon,” 45
maker culture, diverse
at Albertsons Library’s MakerLab, 60–61
community, creation of, 66–67
digital divide and, 55–57
makerspace communication, 65–66
meaning of, 51–53
other makerspace models, 68–69
partnerships, development of, 57–59
radical inclusion, 54–55
skill development from culture, 61–65
successful makerspace, characteristics of, 67–68
summary of, 69
Maker Ed, 43–44, 352
maker education, 36
Maker Education Initiative (Maker Ed), 352
Maker Faires
attendance at, 348–349
for building community of practice, 45
demographics of attendees of, 352
for marketing of makerspace, 27
for professional development, 23
Maker Jawn, 297
maker kits, 49
Maker Media, 352
Maker Mixers, 66
maker movement
diversity of makers/makerspaces, 351–353
keeping up with, 338–341
makerspaces vs., 349
Maker Nights, 224
maker organizations, 329
MakerBot Desktop application, 96–99
MakerBot Replicator 2x printer
- assembly of, 93–94
- build plate, preparation of, 95
- build platform, leveling, 95
- capabilities of, 89
- filament, load/unload, 94–95
- file types accepted by, 91
- preview/print 3D model, 99
- 3D model file, downloading, 96
- 3D model file, opening/modifying, 96–99
- 3D printing with, 93–102
- tips for successful 3D printing, 99–100
- troubleshooting mechanical issues, 100–102

MakerBus
- description of, 318–319
- in driver’s seat, 313
- lessons learned from, 321–323
- Paul, 310

MakerGear M2 printer, 92

MakerLab, Boise State University Albertsons Library, 60–61, 63, 66–67

MakerMobile, 318

makers
- diversity of, 351–353
- maker education of library staff, 361–362
- for mobile makerspace, 320
- Paul, 310

Makers (Anderson), 351

Maker Shed, 137

makerspace
- costs of, 24–25
- culture, 4
- definition of, 3
- equipment lists, 13–18
- expectations for, determination of, 18
- focus, determination of, 7–8
- funding, getting started without, 10–11
- funding for, 8–10
- hackerspace, rise of, 287–288
- hackerspace partnership with, 294
- Lego Junior Makerspaces, 202
- marketing of, 26–27
- planning for, 26
- policy development, 23–24
- professional development, 22–23
- roles, identifying new, 18
- space design, evaluation of, 11–13
- successful, characteristics of, 67–68
- supervision of, 75–76
- training plan, 19–22
- types of makerspaces, 4–7
- usage policies, development of, 25–26
- workspace safety, 78–83

See also library makerspaces; mobile makerspaces

Makerspace (Facebook group), 22

makerspace, sustainability of
- charging patrons, 326–328
- community, building, 335–338
- community, embracing, 334–335
- community, understanding of, 332–334
- fees, alternatives to, 328–331
- financial considerations, 325–326
- grants/budgets, 331–332
- interest/momentum, 332
- keeping up with makerspace movement, 338–341

Makerspace and Participatory Library (Facebook group), 22, 93

makerspace club, 329

Makerspace Librarian’s Sourcebook (Kroski), ix

“Makerspace Mondays,” 22

makerspace movement, 338–341

Makey Makey
- for Interactive Models project, 224–225
- for math fact review, 224
- overview of, 214–215
- Piano program online, 221–222

Making Simple Robots projects, 251–257

manuals, for equipment, 19

marketing, 26–27

Martin, Kim, 307–323

Massachusetts Institute of Technology (MIT), 198

materials
- cheap materials for experimentation/prototyping, 47–48
- conductive, 220

See also supplies

Mattel, 178–179

Max-Villard, Maya, 103–104

Mazzoni, S., 81

McTighe, Jay, 39

merchandise issues, 100–102

media makerspace, 8

media outlets, 26

media-sound-focused makerspace starter kit, 15–16

media-video-focused makerspace starter kit, 15

membership-based makerspaces, 7

membership fee, 328

memory, 183–184

Merlo, F., 81

mesh modeling, 90, 100

message board, 65

metrics, 360–361

Michigan State University, 233

www.alastore.ala.org
micro-empowerment, 60–61
Milled Wooden Phone Stand project, 236–237
milling machine, 231, 236–237
Minecraft Community Hack project, 300
Minecraft Hacking with Kano OS project, 129–131
mission
 inclusive future and, 365
 of library makerspace, 351
MIT (Massachusetts Institute of Technology), 198
MIT App Inventor 2, 298–299
mobile makerspaces
 circuitry projects and, 224
 conclusion about, 322–323
 description of, 6–7, 307–308
 examples of, 318–319
 financial route, planning, 311–313
 funding possibilities, 311
 lessons learned, 321–322
 for marketing of makerspace, 27
 obstacles to, 316–317
 people, importance of, 320–321
 preparation for, 309–311
 reasons for, 308–309
 tools for, 313–314
 use of, 315–316
Modular Robotics, 255–256
momentum, 332
money
 costs of mobile makerspace, 311–313
 planning for mobile makerspaces, 311–313
 sustainability of makerspace, 325–326
 See also costs; funding
Morrison, T., 61
MOSS, 255–256
motor
 for building drone, 270
 drone assembly, 271
 for robotics projects, 248, 250
Mozilla Foundation, Hackasaurus, 299
Mui, Peter, 295
Mullins, Rob, 115
Multiwii, 282
music, 125–127
Mycroft, Alan, 115

N
name tag, 234–236
NAO robots, 260
National Science Foundation, 363
National Writing Project, 302
Nelson, H. G., 62
NetFabb Basic, 100, 101
NetFabb Cloud Service, 100
networking, 23
neurodiversity, 335
Neuromancer (Gibson), 175
New Media Consortium, 356
The New York Times, 177
newspaper, 26
NFC (Near Field Communications) tag, 177–178
Nguyen, L. C., 64
niche, 294, 333–334
NMC Horizon Report: 2015 Library Edition (New Media Consortium), 349
noise, 12, 199
NOOBS (New Out of Box Software), 117
North Carolina State University, 233, 326

O
Oakland Public Library, 295
obstacles, to mobile makerspaces, 316–317
Occupation Safety and Health Administrations’ Personal Protective Equipment Booklet, 76–77
Oculus Rift
 development of, 176
 features of, 357
 smartphone and, 185
Olexa, R, 229
“On the Road, Playing with LEGO, and Learning about the Library, Part Two” (Lotts), 208
online training
 for staff, 19–21
 for users, 21–22
Open Educational Resources (OER) Commons, 44
“Open Hack Nights” event, 294
open house, 66
Open Source Media Center (OSMC), 117
operating system
 See Android OS; iOS
Oregon State University (OSU), 103
Orlando Public Library, 122
outreach
 for building community of practice, 45–46
 community, 59–60
Overly, N. V., 35
Ozobot, 246

P
P21, 353
paper circuits, 226–227
paper prototyping, 38
parking, for mobile makerspace, 317
participatory library
 concepts of, 63
 user engagement in, 64–65
partnerships
 access to resources with, 68
 for building community of makers, 335–336
 for building community of practice, 45–46
 development of, 57–59
 funding for makerspace from, 329
 with groups with similar missions, 69
 for hackerspace program, 294–295
 of MakerLab team, 61
Partridge, H., 64
Passas, Jennifer, 264
patrons
 charging makerspace fee to, 326–328
 community, embracing, 334–335
 community, knowledge of, 332–334
 secondary promotion by, 337
 See also students; users
PBS, 265
PC Magazine, 92
PDB (Power Distribution Board), 270–271
pedagogy
 active learning, 30–31
 collaborative learning, 31
 constructionism, 33
 inquiry-based learning, 31–32
 learning, how makerspaces support, 33–34
 makerspace support of institutional/pedagogical objectives, 34–37
 project-based learning, 32
 prototyping as, 36–37
peers
 peer-to-peer learning, 59
 radical inclusion in makerspace and, 54–55
people
 inside mobile makerspace, 315–316
 mobile makerspace and, 320–321
 mobile makerspace, reasons for, 308, 309
 for mobile makerspace team, 309–310
 See also patrons; users
Pepper robots, 260
personal safety, 76–77
Personalized Cat Decal project, 239–241
Phantom 2 Vision + drone, 278–279
phone stand, 236–237
photography, 282
physical computing
 description of, 290
 kits for, 291
 Trinkets, 293
Pi from Scratch project, 127–129
Pima County library system, Arizona, 64
pins, 137–138
Pinterest, 194
PIR sensor, 151–155
PLA plastic
 qualities of, 89
 toxicity in, 81
Places Journal, 348
planning
 for costs of makerspace, 8
 diverse maker culture and, 53
 for hackerspace programs, 291–292
 lesson plans, 41–43
 for makerspace, 26
 for mobile makerspace costs, 311–313
 training plan, 19–22
plated thread, 163
Plischke, Carsten, 197
Plush Game Controllers project, 172–173
polarized components, 140
policy
 cost considerations, 24–25
 for makerspace, establishment of, 23–24
 for makerspace safety, 75–76
 in staff training, 21
 usage policies, 25–26
polygonal mesh modeling, 90
Ponoko, 102
Pool, Tim, 279
pop-up play, 204
Popular Science, 348
poster printer, 12–13
Poumay, Marianne, 40
power
 Google Cardboard, smartphone requirements
 for, 184
 for mobile makerspace, 317
 socket, 137
Power Distribution Board (PDB), 270–271
power tools, 81, 83
Powers, Meredith, 29–49
preview, of 3D model, 99
printing
 See 3D printers; 3D printing
print-to-digital shift, 29
problem-solving
 library makerspace programming and,
 354–355
 in maker environment, 62
 as twenty-first century skill, 353, 354
product development, 364
professional development, 22–23
programmable robots, 260
programming
 drone flight computer, 268
 hacking with code, 289
Index of library makerspaces, 354–356
Makey Makey with Scratch, 215
platforms for robotics, 261–262
robots, 246, 247
tips for Arduino, 138–139
wearable electronics, 163
See also coding
project-based learning, 32
projects
academic library Lego projects, 203–204
with Arduino, 142–155
building physical robots project, 248
circuitry, 224–228
coding/programming robotics project, 247
with computer numerical control, 234–243
with drones, 279–283
with Google Cardboard, 186–191
hackerspace programs, 298–302
with Legos, 204–208
public library Legos projects, 201–202
with Raspberry Pi, 122–132
robotics, 251–260
3D printing, 104–109
with wearable electronics, 168–173
promotion
of hackerspace program, 294
library-wide maker culture with internal promotion, 337–338
of makerspace, 26–27, 334–335
secondary promotion, 336–337
propeller, 271
Proton Pulse game, 191
prototyping
cheap materials for, 47–48
as pedagogy, 36–37
rapid, 39
3D printing, library use cases, 102–103
public libraries
growth in makerspaces, 349
Legos projects, 201–202
makerspace focus for, 26
makerspaces of, 5
starting makerspace without funding, 11
user visions for makerspace, 55
Python, 289, 301
Python Turtle, 301
Q
Qiu, Kanjun, 162
R
radical inclusion
description of, 52
in diverse maker culture, 54–55
for positive balance of makers, 69
skill development and, 61
radio frequency, 272
radio-controlled transmitters, 267
Radnor Memorial Library, 202
Raspberry Pi
conclusion about, 132–133
description of, 113–114
getting started with, 116–118
introduction to, 114–116
in library, examples of use, 120–122
physical computing with, 290–291
projects with, 122–132
tips for, 118–120
Raspberry Pi Foundation, 115, 119
Raspberry Pi, projects with
All About Pi, 123–125
Google Coder Cloud Server, 131–132
Make Music with Sonic Pi, 125–127
Minecraft Hacking with Kano OS, 129–131
Pi from Scratch, 127–129
time for, 122–123
Raspberry Pi Zero, 115–116
Raspbian OS, 117
receiver, 272–273
registration
of drone, 266, 267, 277
drone workshop and, 281
regulations
for drone operation, 277
for drones, 266, 267, 358
relationships, 337–338
Rendina, Diana, 13, 331
report, of accidents/injuries, 79
resin, 88
resources
for coding/programming robotics project, 247
for curricular materials, 43–44
for emerging technologies information, 356–357
for Google Cardboard, 181
for grants, 331
for keeping up with maker movement, 338–341
library makerspaces for providing access to, 347
maker education of library staff, 361–362
materials for experimentation/prototyping, 47–48
ready-made maker kits for time-limited librarians, 49

www.alastore.ala.org
resources (continued)
for robotics, 250, 261–262
robotics kits, links for, 246
for safety, 84
tech tools, inexpensive, 48–49
RetinaEngrave, 234–236
retrofit, of mobile makerspace, 312
Rhode Island School of Design (RISD), 198
risks
of makerspace, 73–74
supervision of makerspace and, 75
robot kits, 246, 291
robotics
Art Bot project, 300
Beginner Robots with littleBits project, 227
building physical robots, 248
coding/programming robots, 247
conclusion about, 260
definition of, 246
Lego robots, 202
libraries’ use of, 250
overview of chapter on, 245
physical computing with, 290–291
projects, 251–260
resources for, 261–262
tips for, 249–250
types available, 246
Rochester Public Library, 335–336
Roldan, Roberto, 278
roles, 18
Romeo, 260
Room Occupancy Sensor project, 151–155
Rotate control, 97
Royal Society for the Encouragement of Arts, Manufactures and Commerce, 348
Ruby, 289
RubyMonk, 261
Rutgers University Art Library
Best Library Contest, 206
Lego Playing Station, 193
Lego Serious Play at, 204

S
safe environment, 59
safety
for CNC class, 233
crash of machine, 232
culture of safety, creation of, 74
hackerspace program and, 292–293
plans, 76
resources for, 84
risks of makerspace, 73–74
supervision of makerspace, 75–76
user safety in makerspace, 76–77
for wearable electronics, 162
workspace safety, 78–83
Samsung VR Gear, 179, 185
San Diego Central Library, 295–296
San Diego Public Library, 141
Sawaya, Nathan, 195, 198
SBC (single-board computer), 114
Scalable Vector Graphic (SVG) format
for CNC, 230
for Laser-Cut Name Tag project, 235, 236
scaling, 3D model file, 96–97
schematics, for building drones, 268–269
Schiller, Nicholas, 288
Schmidt, Enno, 297
Scholastic, 9
school library
makerspace focus for, 26
makerspaces of, 6
starting makerspace without funding, 10–11
School Library Journal, 349
school visits, 27
schools
incorporation of making into curriculum, 336
mobile makerspace and, 310
Schubert, W. H., 41
Science Buddies, 300
Scrapmobile, 319
Scratch
for hacking, 289
Hacking with Scratch project, 301–302
for Interactive Models project, 225
Makey Makey with, 215, 224
Pi from Scratch project, 127–129
for robotics, 261
Sculpteo, 102
SD card, 116, 117
secondary promotion, 336–337
Section 333 exemption, 266
SeeMeCNC Rostock MAX v2 printer, 92
Seferi, Kristi, 263–285
selective laser sintering (SLS), 88
sensor
with e-textiles, 166
Room Occupancy Sensor project, 151–155
sergers, 83
Settings section, 98
Sew Electric (Buechley & Qiu), 162
sewing, 164–165
See also wearable electronics
sewing machine, 83, 163–164
Shapeways, 102
Shirokobrod, Gene, 103

www.alastore.ala.org
Index // 385

signage, 201
Silhouette Cameo
 Business Hours Decal project, 238–239
description of, 230
Personalized Cat Decal project, 239–241
T-Shirts I and II project, 241–243
Silhouette Studio
 Business Hours Decal project, 238–239
hardware specific, 230
Personalized Cat Decal project, 239–241
T-Shirts I and II project, 241–243
Simple Robot 1: Bristlebots project, 251–252
Simple Robot 2: Wobblebots/Wigglebots project, 252–254
Simple Robot 3: Design Your Own Robot! project, 254–255
Simple Robots 4: Premade Buildable Robots project, 255–257
single-board computer (SBC), 114
Sisters app, 189, 190
sketch
 Arduino Blink project, 143–146
 Temperature Sensor project, 148–151
skills
 development of with diverse maker culture, 61–65
twenty-first century skills, 353–354
users’ development of, 55–57
SLA (stereolithography), 87–88
Slack channel, 60, 65
SLS (selective laser sintering), 88
smart textiles, 157–158
See also wearable electronics
software
 CNC, 230
 for physical computing, 290–291
soldering
 Arduino board, 138
 for building drones, 268, 269
 in hackerspace program, 292
soldering iron, 83
solderless breadboard, 138
Somerson, Rosanne, 198
Sonic Pi, 120, 125–127
Spalding, E., 35
SparkFun
 Arduino Comparison Guide, 136
 for Arduino purchase, 137
 LED tutorial, 165
 Raspberry Pi purchase from, 116
 RedBoard, 136
 wearable electronics tutorial, 162
SparkTruck, 318
speaking engagements, 26–27
Sphero robots, 246, 258–259
sponsors, 330
SQLZoo, 261
St. Petersburg College
 Innovation Lab, 264, 280
 Innovation Lab, use of Arduino, 141
 Seminole Community Library at, 278–279
 Workforce Institute, 265
staff
 culture of safety, 74
 library-wide maker culture with internal promotion, 337–338
 maker education of library staff, 361–362
 maker space professional development, 22–23
 mobile makerspace team, 309
 staffing library makerspaces in future, 362
 supervision of makerspace, 75
 training for building physical robots project, 248, 249
 training plan for, 19–21
 user assistance from, 57
 user safety in makerspace and, 76–77
stainless steel thread, 163
Standards for the 21st-Century Learner (American Association of School Librarians), 353–354
Stanford Bunny
 downloading, 96
 in NetFabb Basic, 100, 101
Stanford University
 FabLearn Fellows program, 44
 SparkTruck, 318
* Stars Wars: The Force Awakens (film), 177
stater kit, Arduino, 136
starter projects, 44–45
staying power, 347–350
STEAM (Science, Technology, Engineering, Arts, Math), 310
STEAM Truck, 7
Steiner, Lewis H., 34
STEM education
argument that makerspaces are only for, 363
3D printing for, 103–104
with wearable electronics, 157
STEM skills
makerspace culture in library, 4
makerspaces in K−12 libraries and, 6
stereolithography (SLA), 87–88
stereopticon, 187
Stern, Becky, 165
Stewart Middle Magnet School, 13
.stl file type, 89, 91
Stolterman, E., 62
stop-motion film, 203, 207
Stoppa, M., 157
storage
of Legos in library, 200
for makerspace supplies, 12, 13
in mobile makerspace, 308
Stratasys’ PolyJet 3D printer model J750, 89
stressbusters, 203, 204
students
learning, types of, 30–33
maker education as learner-driven process, 36
makerspace support of learning, 33–34
mobile makerspace and, 320–321
See also users
The Studio at Anythink, 233
subtractive manufacturing, 87
supervision, of makerspace, 75–76
supplies
for CNC class, 231
crowdfunding for, 330–331
donations for makerspace, 329–330
for makerspace, fees for, 326–328
See also materials
Support option, 98
SVG format
See Scalable Vector Graphic (SVG) format
Swivel Gun! VR Log Ride, 191

T
Tafoya, Stephen M., 113–133
tape, 250
See also conductive tape; copper tape
teaching
by kids in hackerspace program, 293
with Legos, 197–198
pedagogical approaches, 30–33
See also pedagogy
team
collaborative learning, 31
for mobile makerspace, 309
mobile makerspace, time investment, 322
team-based learning, 59
team building with Legos, 196–197
tech companies, 310
technology
access to, library makerspaces support, 34–35
community development and, 66–67
costs of, policy for, 24–25
diverse maker culture and, 51–53
future of library makerspaces and, 350, 356–360
library makerspace programming and, 356
library makerspaces, role in present time, 346–347
maker education of library staff, 361–362
makerspace focus and, 7–8
makerspaces defined by argument, 364
skill development from culture, 62–63
tech tools, inexpensive, 48–49
as twenty-first century skill, 353–354
technology literacy, 34
technology-focused makerspace starter kit, 13
TechShop, 7, 348
TekVenture, 329
Temperature Sensor project, 148–151
Tesla, Nikola, 265
The Possible Project (TPP), 331
theft, 201
Theodore Robinson Intermediate School, 6
Think Box, 5–6
360° photos
Cardboard Virtual Tours project, 190
Create Your Own Cardboard Content project, 189–190
with drone cameras, 265
3D Hubs, 91–92
3D model file
downloading, 96
opening/modifying, 96–99
3D model repositories, 96
3D modeling workshop with Tinkercad, 107–108
3D printer
with CNC, 231
future of library makerspaces and, 350
MakerBot Replicator 2x, 93–102
overview of, 89–90
popular brands/models, 90–93

www.alastore.ala.org
safety suggestions for, 81
in types of makerspaces, 5, 6, 7
usage policies for, 25
3D Printer Buyer’s Guide (Make Magazine), 92
3D printing
application of in specific subject areas, 109–110
commercial 3D printing services, 102
definition of, 87
demo and petting zoo event, 104–106
fee for, 326, 327
library makerspace programming and, 354–355
library use cases, 102–104
with MakerBot Replicator 2X, 93–102
policy for makerspace, 23
process of, 89
projects, 104–109
resources for lesson plans, 44
3D printers, overview of, 89–90
3D printers, popular brands/models, 90–93
3D printers/materials, 88–89
types of printing technologies, 87–88
user engagement with, 53, 64–65
3D Systems’ ProX950 3D printer, 89
Thrills, Chills, and Spills project, 190–191
time
for CNC class, 231
for coding/programming robotics project, 247
for mobile makerspace, 322
for wearable electronics project, 166–167
timeline, for training, 19
Tinkercad, 107–108
tools
makerspaces defined by argument, 364
for mobile makerspaces, 313–314
See also equipment
tours, of makerspace, 22
Toy Hacking project, 300
TPP (The Possible Project), 331
Traffic Light project, 146–148
training
brief/empowering, 64
Legos training sessions, 204
materials, creation of while learning, 20
for robotics projects, 248, 249
staffing library makerspaces in future, 362
for user safety in makerspace, 77
of users, levels of, 55–57
training plan
construction of, 19
for makerspace, 19–22
for staff, 19–21
supervision of makerspace and, 75
for users, 21–22
Tran, Uyen, 141
transdisciplinarity, 53
transmitter, 272–273
Treehouse, 262
Trinkets, 293
troubleshooting
circuitry projects, 222–223
3D printer mechanical issues, 100–102
T-Shirts I and II project, 241–243
Tuck, K., 66–67
Tucker, Fred, 265
“Turn your doodle into a 3D model” event, 106–107
Tuscany Dive, 188
tutorials
for Google Cardboard app, 180
for LEDs, 165
for wearable electronics, 162, 163
Twain, Mark, 345
twenty-first century skills, 353–354
Twitter
hashtags, 339
Legos presence on, 195
lists, 339–340
for makerspace user training, 22
“2016 Best 3D Printer Guide” (3D Hubs), 91–92
U
Ubuntu Mate, 117
underage/minor policies, 76
Understanding by Design (Wiggins & McTighe), 39
UNICEF, 197
University Campus Suffolk, 204
University of Cambridge, 114–115
University of Leeds, 264
University of Ottawa, MakerMobile, 316, 318
University of South Florida Libraries, 277–278
unmaking, 11
unmanned aerial vehicles (UAVs)
See drones
upcycling, 329–330
Upton, Eben, 115
U.S. military, 265
usage policies, 25–26
USB
Flora support for, 160
LilyPad and, 159–160
port for Arduino Uno, 137
user engagement
importance of, 52
in participatory library, 64–65
user group, 102
user input, 184
user safety, 76–77
users
culture of safety and, 74
digital divide/participatory maker culture and, 55–57
diversity of makers/makerspaces, 351–353
makerspace fee for, 326–328
partnerships, development of, 57–59
radical inclusion, 54–55
skill development from culture, 61–65
supervision of makerspace, 75–76
training for makerspace, 21–22
visions for makerspace, 55
workspace safety and, 78–83
See also patrons; students

V
values
of ALA, 365
hackerspaces and, 302
of library/hacker, 288
Varma, Maya, 103–104
Vecchione, Amy, 51–69
“The Veldt” (Bradbury), 175
ventilation
for hackerspace program area, 293
for makerspace equipment, 12, 78–79
Verizon, 177
video
“Alternative Drone Technologies for Aerial Photography and Videography” workshop, 282
drone buying workshop, 282–283
from drones, 264–265, 272
library makerspace focused on, 11
for 3D printer assembly, 93
View control, 97
View-Master Virtual Reality Viewer, 178–179
vinyl cutter, 241–243
virtual reality (VR)
development of, 175–176
Google Cardboard app, 181–182
overview of, 357–358
See also Google Cardboard
visual literacy, 359
volatile organic compounds (VOCs), 79, 81
volunteers, 321, 336
VR Crossy Road, 190

W
wallet, 170–171
Walter Library at University of Minnesota, 203
waste, 12
wearable electronics
Flora, 160
Gemma, 161
libraries’ use of, 167
LilyPad/LilyTwinkle, 158–160
overview of, 157–158
physical computing with, 290–291
programming, 163
projects with, 168–173
safety of, 162
tips for, 163–167
tutorials for, 162
“Wearable Electronics and Smart Textiles: A Critical Review” (Stoppa & Chiolerio), 157
wearable electronics, projects
Electrochromatic Circuits, 171–172
LED Cuff Bracelets, 169–170
LED Fabric Bookmarks, 168–169
Light Locked Wallets, 170–171
Plush Game Controllers, 172–173
websites
about Legos, 195
for keeping up with maker movement, 338–341
See also resources
Weiwei, Ai, 195
Welch, Chris, 278
West, Dean, 198
Westport Library, 185, 260
White House Science Fair, 103–104
WiFi, 184
Wiggins, Grant, 39
Wigglebots project, 252–254
Willard, Nancy, 31
Windows 10 IOT Core, 117
wire stripper, 250
Wobblebots project, 252–254
women, 59–60
Wonder Workshop, 257–258
workshop
charging patrons fee for, 327–328
for user training, 22
workspace safety, 78–83

Y
YouTube, 182

Z
Zehm, Ryan, 55
Zookal (textbook company), 278
Zotrax M200 printer, 92